21.(本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设 ,求 与 的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.
22.(本小题满分10分)选修4-1:几何证明选讲
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(I)证明:CD//AB;
(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
23.(本小题满分10分)选修4-4:坐标系统与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为 ( 为参数),曲线C2的参数方程为 ( , 为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ= 与C1,C2各有一个交点.当 =0时,这两个交点间的距离为2,当 = 时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当 = 时,l与C1,C2的交点分别为A1,B1,当 = 时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数 =|x-2| x-5|.
(I)证明: ≤ ≤3;
(II)求不等式 ≥x2 x+15的解集.